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ABSTRACT 
 

The effect of air-sea coupling on tropical climate variability is investigated in a coupled 

linear inverse model (LIM) derived from the simultaneous and 6-day lag covariances of 

observed 7-day running mean departures from the annual cycle. The model predicts the 

covariances at all other lags. The predicted and observed lag covariances, as well as the 

associated power spectra, are generally found to agree within sampling uncertainty. This 

validates the LIM’s basic premise that beyond daily time scales, the evolution of tropical 

atmospheric and oceanic anomalies is effectively linear and stochastically driven. It also 

justifies a linear diagnosis of air-sea coupling in the system.  

The results show that air-sea coupling has a very small effect on the subseasonal 

atmospheric variability. It has much larger effects on longer-term variability, in both the 

atmosphere and ocean, including greatly increasing the amplitude of ENSO and 

lengthening its dominant period from two to four years. Consistent with these results, the 

eigenvectors of the system's dynamical evolution operator also separate into two distinct 

sets: a set governing the nearly uncoupled subseasonal dynamics, and another governing 

the strongly coupled longer term dynamics. One implication of this remarkably clean 

separation of the uncoupled and coupled dynamics is that GCM errors in tropical air-sea 

coupling may cause substantial errors on interannual and longer time scales, but probably 

not on the subseasonal scales associated with the MJO.  
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1. Introduction 

Despite many years of coordinated model development in the climate research 

community, realistic simulations of tropical variability have remained elusive in coupled 

climate models, both on the interannual time scales of El Niño-Southern Oscillation 

(ENSO) and the subseasonal time scales of the Madden-Julian Oscillation (MJO). Figure 

1 highlights one aspect of the problem for 18 global coupled models participating in 

Phase 3 of the World Climate Research Program’s Coupled Model Intercomparison 

Project (CMIP-3), used in the Fourth Assessment Report (AR4) of the Intergovernmental 

Panel on Climate Change (IPCC, 2007). The model spectra of the leading principal 

component (PC) of monthly tropical SST variability during 1950-1999 show not only 

very different total power compared to the observed spectrum but also different 

timescales in which it is concentrated. In many cases, they also appear more sharply 

peaked than the observed spectrum, which apart from a rather broad peak at 4-yr periods 

approximates the spectrum of red noise with an 8-month correlation scale. Such an 

observed spectrum is suggestive of a damped linear system with broadband stochastic 

forcing, i.e. forcing with a much shorter correlation scale than 8 months.  

One possible source of the climate model errors is the misrepresentation of shorter-term 

tropical variability (e.g., Fedorov et al. 2003), since MJO episodes might initiate ENSO 

events (e.g., Kessler et al. 1995; McPhaden 1999; van Oldenborgh 2000; Bergman et al. 

2001; Zhang and Gottschalck 2002; Zavala-Garay et al. 2005; Roundy and Kiladis 2006; 

McPhaden et al. 2006). Additionally, ENSO itself may modify MJO variability (e.g., 

Kessler 2001; Tam and Lau 2005; Pohl and Matthews 2007; Hendon et al. 2007). It is 

thus of concern that not only do GCMs continue to have difficulty reproducing MJO 
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phase speeds and vertical structures (e.g., Lin et al. 2004, 2006), but also that MJO 

simulations are particularly problematic in the western Pacific (e.g., Sperber et al. 2005; 

Zhang et al. 2006). 

In searching for the causes of such model deficiencies, a key research issue is how air-sea 

coupling affects MJO and ENSO development. Although coupled theories of ENSO are 

very well established (e.g., Bjerknes 1969; Schopf and Suarez 1988; Battisti and Hirst 

1989; Jin 1997; Wang et al. 1999), it is less clear how important coupling is to the 

initiation of ENSO events, and also precisely how it affects the overall stability of the 

system. How air-sea coupling influences the MJO is another unsettled question. Although 

SST anomalies of a few tenths of a degree are apparently induced by MJO winds and 

cloudiness that drive changes in surface heat fluxes (Shinoda et al. 1998; Woolnough et 

al. 2000), it is unclear how -- and how strongly -- those SST anomalies then feed back on 

the MJO. Studies with AGCMs coupled to an interactive ocean report conflicting results. 

Some find improved MJO simulations and/or forecasts (Zheng et al. 2004), but others do 

not (Hendon 2000; Liess et al. 2004; Lin et al. 2006). Studies concerning the effect of 

coupling on the overall magnitude of the intraseasonal variability are similarly confusing, 

with some reporting an increase (Zheng et al. 2004), and others a decrease (Inness and 

Slingo 2003; Pegion and Kirtman 2008) relative to uncoupled simulations.  

To improve the tropical simulations of global coupled GCMs, one needs diagnostic 

methods that are equally applicable to observed and simulated climates. One useful 

approach has been to construct so-called “intermediate” coupled models that make some 

key simplifying assumptions but still retain the important physics (e.g., Cane and Zebiak 

1985; Battisti and Hirst 1989; Neelin and Jin 1993; Chang 1994; Jin 1997; Neelin and 
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Zeng 2000). We focus here on a different but complementary approach: to diagnose the 

impacts of air-sea coupling in an empirically determined dynamical model of the 

observed coupled system. Specifically, we construct a coupled linear inverse model 

(LIM), following procedures similar to those described in Penland and Sardeshmukh 

(1995; hereafter PS95), in which the dynamical evolution operator is estimated from the 

observed statistics of weekly tropical variations over the last 24 years. Evidence that such 

a LIM should be useful for our diagnostic purposes is provided in Fig. 1 by the favorable 

comparison of the LIM-predicted spectrum (along with confidence intervals, see section 

3.3) of the leading PC of tropical SST with the corresponding observed and coupled 

GCM spectra. Our LIM diagnosis may not necessarily lead to the same kind of physical 

understanding as the intermediate coupled models, but because it simulates the observed 

variability just as well as -- or even better than -- many coupled GCMs, we believe that it 

can provide a reliable quantification of the coupling effects. 

Most previous LIMs were constructed using only atmospheric or only oceanic data. 

Atmospheric LIMs (A-LIMs; Penland and Ghil 1993; Winkler et al 2001, hereafter 

WNS; Newman et al 2003; Newman and Sardeshmukh 2008) for winter and summer 

seasons, based on weekly Northern Hemisphere streamfunction and tropical diabatic 

heating anomaly data, and oceanic LIMs (O-LIMs; Penland and Matrosova 1994; PS95; 

Penland 1996; Penland and Matrosova 1998; Johnson et al. 2000; Newman 2007; 

Alexander et al. 2008), based on seasonal or annual mean SST anomaly data, have both 

been shown to be competitive with comprehensive nonlinear GCMs. Indeed Penland's O-

LIM is currently used to make real-time SST forecasts that are included in NOAA's 

regular Climate Diagnostics Bulletin. Newman et al. (2003) showed that their A-LIM's 



 5 

Week 2 tropical diabatic heating forecasts had comparable skill to that of a bias-corrected 

version of the GCM used operationally in 1998 at NCEP (Whitaker et al. 2003). Indeed 

over the western Pacific, a potentially important region of air-sea coupling on 

subseasonal scales, the A-LIM's skill was considerably higher.  

One can think of several ways to improve the A-LIMs and O-LIMs just mentioned. 

However, instead of doing this independently of each other, it is evident that much can be 

gained by coupling the two. From a forecasting standpoint alone, one can imagine how such 

a coupled LIM (C-LIM) might improve upon the skill of each. For example, equatorial 

heating anomalies at the dateline would evolve differently depending upon the SST 

conditions. If MJO propagation were significantly impacted by air/sea interactions, then the 

C-LIM would also be better at predicting the MJO than an A-LIM. Also, some of the 

unpredictable rapid variations treated as stochastic noise in the seasonal O-LIM may be 

associated with predictable atmospheric variations on weekly time scales, and may lead to 

improved SST prediction skill. Beyond improving forecasts of its component LIMs, 

however, a C-LIM would allow explicit separation of the “internal” oceanic and 

atmospheric dynamics from the coupled dynamics (see Newman et al. 2000 for an 

extratropical example). 

The primary aim of this paper is to construct a C-LIM useful not only for simulating and 

predicting tropical anomalies on subseasonal to seasonal scales, but also for diagnosing 

the effects of air-sea coupling on tropical climate variability in a unified dynamical 

framework. Details of the C-LIM’s construction, including the observational datasets 

employed, are discussed in section 2. In section 3, we show that coupling improves both 

atmospheric and SST forecast skill; that is, the C-LIM’s forecast skill is as good as or 

better than the A-LIM and O-LIM skill in their respective domains. As a further key 
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demonstration of linear dynamics justifying our linear diagnosis here, we show that the 

C-LIM reproduces the observed lag-covariances at much longer lags than the 6-day lag at 

which it is trained, as well as the power spectra of the leading PCs of both SST and 

diabatic heating variability. Section 4 presents a detailed diagnosis of the coupling 

impacts on both atmospheric and oceanic variability. The interpretation of these results is 

greatly clarified by a striking discovery of this paper: a sharp separation of the 

eigenvectors of the C-LIM's (and therefore presumably also the real tropical climate 

system's) dynamical evolution operator into two distinct sets, a set governing the nearly 

uncoupled subseasonal dynamics, and another governing the strongly coupled longer 

term dynamics. Section 5 present further results on how coupling impacts MJO and 

ENSO evolution, and concluding remarks are made in section 6. 

2. Model details and data 

Linear inverse modeling may be broadly defined as extracting the dynamical evolution 

operator L of the system  

(1) 

! 

dx

dt
= Lx + "  , 

from its observed statistics, as described for example in PS95 (see also Penland 1989, 

1996; Penland and Ghil 1993; Delsole and Hou 1999; Winkler et al 2001; Newman et al 

2003; Newman 2007; Alexander et al. 2008; Newman and Sardeshmukh 2008). The 

procedure and its strengths and pitfalls are discussed at length in these papers, so we will 

only provide its bare essentials here for convenience of later discussion.  
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In any multidimensional statistically stationary system with components xi, one may 

define a time lag covariance matrix C(τ) with elements Cij(τ) =<xi(t+τ)xj(t)>, where 

angle brackets denote a long-term average. In linear inverse modeling, one assumes that 

the system satisfies C(τ) = G(τ)C(0), where importantly G(τ) = exp(Lτ) and L is a 

constant matrix. One then uses this relationship to estimate L from observational 

estimates of C(0) and C(τ0) at some lag τo. In such a system any two states separated by a 

time interval τ are related as x(t+τ) = G(τ)x(t) + ε , where ε is a random error vector 

with covariance E(τ) = C(0) – G(τ)C(0)GT(τ). Note that the system need not have 

Gaussian statistics for these relations to hold. However, for its statistics to be stationary, 

L must be dissipative, i.e. its eigenvalues must have negative real parts. In a forecasting 

context, G(τ)x(t) represents the “best” forecast (in a least squares sense) of x(t+τ) given 

x(t), and E(τ) represents the expected covariance of its error. Note that for large lead 

times τ, G(τ)x(t) ⇒ 0 and E(τ)⇒ C(0). Note also that unlike multiple linear regression, 

determination of G at one lag τo gives G at all other lags. One can also use the estimates 

of the forecast error covariance to estimate the statistics of the noise forcing ! .  

For our C-LIM, we choose the model state vector x to be  

! 

x =

T
O

"

H

#

$ 

% 

& 
& 
& 
& 

' 

( 

) 
) 
) 
) 
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where TO is anomalous sea-surface temperature, ψ is anomalous streamfunction, H is 

anomalous diabatic heating, and χ  is anomalous velocity potential. An atmospheric 

subvector is also defined as 

! 

x
A

=

"

H

#

$ 

% 

& 
& 
& 

' 

( 

) 
) 
) 

. 

All quantities represent 7-day running means. Rapid fluctuations in wind stress, heat flux, 

and other phenomena on timescales shorter than 7 days therefore constitute the noise 

term in (1). Twenty-four years (1982 to 2005) of data were used to define x. The diabatic 

heating rates were determined from an improved iterative solution of the “chi-problem” 

(Sardeshmukh 1993; Sardeshmukh et al. 1999), as described in WNS. Weekly averaged 

SST data were obtained from the NCEP OI V2 dataset (Reynolds et al. 2002), and then 

interpolated to daily resolution. Streamfunction, velocity potential, and heating were all 

filtered with a 7-day running mean. Low-frequency anomalies were defined by removing 

each variable’s annual cycle, defined by running a 31-point smoother on the daily 

climatology of the lowpass data, at each gridpoint from the weekly means. Circulation 

anomalies (ψ and χ) were determined at 250, 550, and 850 hPa, and heating anomalies 

were determined at 400, 700, and 1000 hPa. All circulation variables were spectrally 

truncated to T21 and transformed onto a Gaussian grid; SST was area-averaged onto this 

same grid. Diabatic heating anomalies were further smoothed with a T21 spectral filter 

that attenuates small-scale features and Gibbs phenomena (Sardeshmukh and Hoskins 

1984).  
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The filtered anomaly fields were then projected onto their leading Empirical Orthogonal 

Functions (EOFs), which were determined only in the region 25oS—25oN. Prior to 

computing EOFs, each field was normalized by its domain-averaged climatological root-

mean-square amplitude. The EOFs of streamfunction and velocity potential were each 

computed from a vector combining the normalized 850, 550, and 250 hPa anomalies, and 

the EOFs of heating from a vector combining the normalized 1000, 700, and 400 hPa 

anomalies, rather than at each level separately. The leading 15/7/13/3 EOFs of To/ψ/H/χ  

were retained, which explained about 71/44/31/67 percent of the variability of their 

respective fields. Locally, however, the amount of variance explained can be 

considerably higher (or lower), as seen in Fig. 2, which shows the (untruncated) variance 

of To, H400 (that is, H at 400 hPa), ψ250 and χ250 (that is, ψ  and χ  at 250 hPa), and the 

local fraction of variance retained by the truncated EOF basis for each field.  

The time-varying coefficients of these EOFs, i.e., the principal components (PCs), define 

the 38-component state vector x. A training lag of το=6 d was used to determine L. The 

EOF truncations and training lag were chosen to maximize the LIM’s cross-validated 

forecast skill while avoiding some sampling problems (see below and WNS), but 

otherwise do not qualitatively affect the points made in this paper. In particular, retaining 

more EOFs and thus more variance did not result in significant and unambiguous 

improvements of the metrics shown in the next section, nor was the estimate of the 

impact of coupling materially altered. We also constructed a corresponding A-LIM (O-

LIM) using the same atmospheric (SST) truncation, so that xA (TO) was represented by a 

23-component (15-component) state vector. 
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For use in some additional calculations, we also constructed a highpass filtered dataset, 

using the Wheeler and Hendon (2004) definition of a highpass filter as the total anomaly 

minus its prior 119-day mean. Highpass EOFs and PCs were then determined from the 

combined data vector, rather than determining EOFs for each variable separately as in 

constructing the LIM. The resulting two leading PCs (not shown), while not based on 

meridionally-averaged data as in Wheeler and Hendon, strongly correspond to their 

Realtime Multivariate MJO series 1 (RMM1) and 2 (RMM2).  

3. Evaluating the LIM 

3.1. Forecast skill 

We first investigate whether extending the state vector to include both atmospheric and 

oceanic components improves LIM forecast skill, by comparing the C-LIM's skill to that 

of the O-LIM or A-LIM alone. As described in WNS, all estimates of forecast skill were 

determined by comparing cross-validated (i.e. verified on independent data) model 

predictions to the untruncated data.  

Figure 3 shows that the C-LIM does have higher H400 forecast skill, measured by local 

anomaly correlation, for forecast leads of both 28 (Figs. 3a and b) and 150 (Figs. 3c and 

d) days. In general, the C-LIM's atmospheric forecast skill improvement is larger for 

longer lead times, both for H400 and all other levels and variables (not shown). Long lead 

atmospheric skill is enhanced because the C-LIM also captures TO evolution. In fact, a 

second set of C-LIM forecasts in which TO is held fixed (i.e., TO(t) = TO(0)) has much 

poorer 150-day forecast skill (not shown). TO evolution is not so important at the shorter 

28-day lead, where fixed TO yields about the same C-LIM forecast skill. 
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At first glance, the impact of SST on the Day 28 atmospheric forecasts appears small: the 

C-LIM's skill is only slightly higher. This is somewhat misleading, since the A-LIM 

implicitly includes linear diagnostic relationships between xA and TO. To better estimate 

the impact of TO on average xA skill, we repeated all C-LIM forecasts by initializing with 

only xA (that is, by setting TO(t=0) = 0 in all forecasts). Figs. 3e and 3f show the resulting 

H400 forecast skill, which suggest that initial SST conditions can impact western Pacific 

atmospheric skill for leads as short as 28 days. Note that even these forecasts do not 

entirely exclude the effects of TO upon xA, since initial xA anomalies induce TO anomalies 

to form, which subsequently feed back on xA during the forecast. A different experiment, 

entirely removing atmosphere-ocean coupling from the forecast operator (see section 3), 

again has little impact on long-range atmospheric skill (not shown). On the other hand, 

for shorter forecast leads (such as 14 days; not shown), we find some atmospheric skill 

over the equatorial Indian and west Pacific Oceans to be independent of TO. 

Including xA in x improves TO forecast skill but in a fairly minor way, for example at 

150-day (Figs. 4a and c) and 270-day (Figs. 4b and d) forecast lead times. This 

improvement is not merely due to the higher order of the C-LIM state vector, since O-

LIM forecasts are not improved with a higher order state vector. Neither does the 

improved skill appear due to initial atmospheric conditions, since even C-LIM forecasts 

initialized with xA (t=0) = 0 (Figs. 4e and f) are slightly more skillful than the O-LIM. 

One possibility is that small sampling errors are introduced in the O-LIM operator when 

the atmospheric state is not explicitly part of the state vector. Of course, these skill 

differences are so small that they may also be simply due to chance. 
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3.2. Observed and LIM lag-covariability 

A key test of the LIM is to determine how well it represents observed variability over 

lags other than the lag on which it is trained. This “tau-test” (Penland 1989; PS95) can 

take many forms, but one of the more easily interpretable is to recall that (1) immediately 

implies that C(τ) = G(τ) C(0), where G(τ) = exp(Lτ). That is, the LIM should be able to 

reproduce observed lag-covariance statistics at all lags. For example, Newman and 

Sardeshmukh (2008) showed their extratropical LIM reproduced observed 21-day lag-

autocovariances of streamfunction and sea level pressure. We employ a similar test here 

for diabatic heating and SST. 

Figure 5 compares the observed and predicted lag-autocovariances of H400 and TO. The 

C-LIM’s prediction of 28-day lag-autocovariance of H400 (top panels of Fig. 5) is 

significantly better than that of the A-LIM (not shown) and compares well with 

observations. We find that the small differences between the two fields over the central 

and eastern Pacific are largely a consequence of the reduced variance represented by the 

H EOF truncation (Fig. 2), whereas the differences in the western Pacific are not. Similar 

comparisons exist at other levels and for χ  and ψ.  

The C-LIM’s predicted 150-day lag-autocovariance of TO (middle panels of Fig. 5) also 

compares very well with observations, with relatively minor differences well within 

sampling uncertainty. However, for the longer lag of 270 days (bottom panels of Fig. 5), 

while the C-LIM prediction of the lag-autocovariance has about the right magnitude, it 

has only the merest hint of the pronounced local minimum centered at about 130oW. 
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3.3. Power spectra 

A complementary test of linearity is to make a more direct comparison of the C-LIM's 

predicted low-frequency variance with observations by either computing the power in 

desired frequency bands directly from (1) (as in Penland and Ghil 1993), or by making a 

long run of (1) and collecting statistics. We followed the latter approach, integrating (1) 

for 2400 years using the method described in Penland and Matrosova (1994). The white 

noise forcing 

! 

" = q
j

j

# $
j
r
j
(t) was specified using independent Gaussian white noises rj(t) 

with unit variance, and qj and (ηj)2 as the eigenvectors and eigenvalues, respectively, of 

the positive-definite noise covariance matrix Q =  <ξξT>dt determined as a residual in 

the Fluctuation-Dissipation relationship 

(2) dC(0)/dt = 0 = LC(0) + C(0)LT +  Q , 

given the observed C(0) and L. The resulting Q is a legitimate covariance matrix since all 

its eigenvalues are found to be positive. The 2400-yr model time series is separated into 

100 24-yr segments. The observed spectra and the ensemble mean of the model spectra 

for the three leading PCs of TO and H are shown in Figs. 6 and 7, respectively. The 

corresponding EOF pattern for each spectrum is shown in the inset panels. The gray 

shading shows the 95% confidence intervals of these spectra, estimated using the 100 

model realizations. 

The LIM reproduces the main features of the observed spectrum of the leading PC of 

each model variable (results for ψ and χ  are not shown). Obviously, the mean LIM 

spectra are much smoother than observed, due to the relatively few degrees of freedom in 

the truncated EOF space. On the other hand, the irregularity of the observed spectra is at 
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least partly due to sampling, as indicated by the confidence intervals, which highlight 

how much variation in the spectra could occur simply from different realizations.  

For higher order PCs, the LIM reproduces the intraseasonal peak centered at a period of 

about 50 days, but appears to underestimate the peak of variability on the longest time 

scales. This provides an explanation for the difference between the observed and 

predicted 270-day lag-covariance (Fig. 5): it is related to an underestimate of the 

persistence of TO/EOF2 and not to erroneous evolution of the main ENSO pattern 

(TO/EOF1). Of course, given the shortness of the data record there is considerable 

uncertainty in the observational spectra on these longest time scales as well.  

4. Effects of air-sea coupling 

4.1. Decoupling the linear dynamical operator 

The effects of coupling between the atmosphere and ocean may be investigated in a 

framework in which (1) is rewritten as 

(3) 

! 

d

dt

T
O

x
A

" 
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Note that 

! 

L
AA

 is distinct from the linear operator obtained from the A-LIM of xA alone. 

Recall from the discussion of its forecast skill (Fig. 3) that the A-LIM implicitly includes 

linear diagnostic relationships between xA and TO. By explicitly separating out the effects 

of TO on xA and vice versa, (3) enables us to identify LAA more cleanly with the  

“internal” (i.e., uncoupled) atmospheric dynamics. This is also the case when comparing 

LOO to the O-LIM. Of course, LAA and LOO may each implicitly retain the influence of 
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variables not included in x, and to the extent that both these terms are related to the same 

variables they may not be entirely independent.  

We define a new “uncoupled” operator Lunc in which LAO = LOA = 0, resulting in the two 

independent dynamical systems,  

(4) 

! 

dx
A

dt
= L

AA
x
A

+ "
A
 

and  

(5) 

! 

dT
O

dt
= L

OO
T
O

+ "
O

. 

The atmospheric and SST noises are uncorrelated with each other but are otherwise 

unchanged from the full LIM calculation above. We made a second 2400 yr run using 

this uncoupled model. The resulting spectra (green lines in Figs. 6 and 7) make clear that 

without coupling TO/PC1 variability is very weak and shifts to a shorter, two-year period. 

The impact of coupling is greatest for this PC; overall, uncoupling reduces total TO 

variance by a little over two-thirds in the Pacific and by roughly a third in the Atlantic 

(not shown). In addition, the meridional width of SST variability is somewhat reduced in 

the uncoupled run (not shown). Unsurprisingly, interannual atmospheric variability is 

essentially eliminated (Fig. 7). On the other hand, intraseasonal atmospheric variability is 

hardly changed: there is essentially no difference between the full and uncoupled LIM 

atmospheric PC spectra for periods of less than about 100 days. 
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4.2. Coupled and nearly uncoupled subspaces of L 

We next show how the eigenmodes of L, obtained from Luj = uj ωj where uj are the 

eigenmodes and ωj the corresponding complex eigenvalues, naturally form two distinct 

subspaces that can be used to distinguish between coupled and uncoupled dynamics. Fig. 

8a shows the eigenvalues, plotted as frequency, Im(ωj/2π), vs. e-folding time (eft), -

Re(ωj)-1. The eigenmodes fall into two distinct classes: one set has large amplitude in 

both TO and xA (“coupled” eigenmodes u
j

coup ) and a second set has large amplitude in xA 

but small amplitude in TO (nearly uncoupled or “internal atmospheric” eigenmodes u
j

int ). 

Note from Fig. 8a that u
j

coup  also have relatively low frequency and large efts, while u
j

int  

have relatively high frequency and small efts. Also shown in Fig. 8a are the eigenvalues 

of Lunc, whose eigenmodes fall into two distinct classes, in this case by construction: one 

set has amplitude in TO but zero amplitude in xA (“SST-only” modes) and a second set 

has amplitude in xA but zero amplitude in TO (“atmosphere-only” modes). We find a 

strikingly close correspondence between u
j

int and the atmosphere-only eigenmodes of 

Lunc, not only because most of the corresponding eigenvalues have such minor 

differences but also because the eigenmodes themselves are mostly so similar. This latter 

point is clear from Fig. 8b, which shows the maximum pattern correlations (Borges and 

Sardeshmukh 1995) between the closest corresponding eigenmodes of L and Lunc. Only 

the lowest frequency u
j

int have structures with even minor differences from their 

uncoupled atmosphere-only counterparts. On the other hand, little correspondence exists 

between the u
j

coup  and the SST-only eigenmodes of Lunc.  
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Figure 8 strongly suggests that while air-sea coupling greatly modifies the slow SST 

eigenmode subspace, it only minimally modifies the faster internal atmospheric 

eigenmode subspace. For example, a comparison of the two leading eigenmodes of L and 

Lunc (Fig. 9) shows that the least damped eigenmode of L has an ENSO-like pattern and 

period entirely absent in the uncoupled SST-only eigenmodes. In contrast, the least 

damped internal atmospheric eigenmode (Fig. 10a), with period and pattern characteristic 

of an MJO, is virtually identical to the least damped atmosphere-only eigenmode. Even 

for the few internal atmospheric eigenmodes that are altered by coupling (e.g., Fig. 10b), 

the differences between eigenmode structures are fairly subtle, and the relatively large 

changes in period likely have a minor impact on the evolution of eigenmodes that are so 

strongly damped. 

Since the subspace defined by the internal atmospheric eigenmodes of the full operator 

corresponds so well to the subspace defined by the atmosphere-only eigenmodes of the 

uncoupled operator, it likely represents that portion of the atmospheric dynamics only 

weakly coupled (if at all) to SST. This suggests that coupled and internal atmospheric 

variability can be naturally separated by dividing the state vector x into two parts, x 

=xcoup  + xint , where 

x
coup

=  u
j

coup!
j

coup
(t)

j

" , 

and  

x
int
=  u

j

int!
j

int
(t)

j

" , 
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an approach analogous to the nonnormal filter used by Penland and Matrosova (2006) to 

isolate ENSO. Time series !
j

int
(t) and !

j

coup
(t)  are determined by taking the inner product 

of x(t) with the corresponding (biorthogonal) adjoint vectors. Note that L is not self-

adjoint and these two subspaces are not orthogonal. That is, the total variance of x is not 

the sum of the variances of xcoup  and xint . Moreover, in the absence of forcing (including 

stochastic forcing), xcoup  and xint do not interact: they evolve independently of each other.   

The spectra of the leading H PCs projected in these two subspaces, Hcoup and Hint, are 

shown in Fig. 7. For H/PC1 the separation is particularly distinct: Hcoup/PC1 

approximates the spectrum of red noise with about an 8-month correlation scale and 

represents almost all the H/PC1 interannual variability, while Hint/PC1 approximates the 

spectrum of red noise with about an 8-day correlation scale and represents almost all the 

H/PC1 intraseasonal variability. While the spectral tails of the two processes overlap for 

variability within the intra-annual band (periods of several months), separation into 

coupled and internal atmospheric subspaces also acts, in effect, as a bandpass filter; that 

is, the sum of the Hcoup/PC1 spectrum and the Hint/PC1 spectrum roughly equals the total 

H/PC1 spectrum. A similar result exists for H/PC3, although its interannual variability is 

relatively much weaker.  

For H/PC2, however, in the intra-annual band the two subspaces have substantial spectral 

overlap but in this case their variances are not additive. This means that H/PC2 

variability in this frequency band projects on nonorthogonal eigenmodes (i.e., similar 

spatial structures but very different eigenvalues) in both subspaces. As a consequence, a 
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bandpass filter of H/PC2 would confuse slower, coupled variability with faster, largely 

uncoupled variability. 

5. Impact of coupling on the evolution of the MJO and ENSO 

Having demonstrated how coupling affects the overall statistics of tropical variability, we 

next examine how coupling more specifically affects MJO and ENSO evolution, by 

integrating (1) forward from some suitable initial conditions. The evolution discussed 

below is entirely deterministic; that is, unlike the model runs discussed in the previous 

sections, no stochastic noise forcing is included in these integrations.  

5.1. Evolution of the MJO 

Figure 11 shows an example of MJO evolution in the C-LIM. Selected fields of the initial 

MJO anomaly, determined by regressing the highpass dataset onto the leading "MJO PC" 

(see section 2), are shown in Fig. 11a. Other variables and levels have corresponding 

anomalies (not shown). While this “1-sigma event” initial condition is determined from 

the highpass dataset, its subsequent evolution is based upon the full C-LIM constructed 

from the 7-day running means. Also, note that Fig. 11a shows the regression projected in 

the retained EOF space, which results in halving the initial Indian Ocean SST anomaly in 

the untruncated regression (not shown); all other changes are negligible.  

After about two weeks (Fig. 11b), the state vector evolves into a pattern very similar to 

EOF2 of the highpass data (not shown). [Conversely, a C-LIM integration initialized with 

fields regressed on highpass PC2 evolves into highpass EOF1 (not shown).] Hovmuller 

diagrams of H400 and TO at 30S (Fig. 11c) and ψ850 and χ 850 at 80N (Fig. 11d) show 

continuous eastward phase propagation with a 54-day peak-to-peak period. Also, the 
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vertical structure of H is “top-heavy” and tilted westward with height (not shown), with 

maxima about twice as strong and about 70 westward at 400 hPa compared to 700 hPa, 

both in agreement with Lin et al. (2004). These effects are weaker for maritime continent 

anomalies. The C-LIM also captures the not-entirely-smooth propagation of the anomaly, 

including the “jump” of convection across the maritime continent (e.g., Knutson and 

Weickmann 1987). Over the course of one half cycle, peak amplitude decays fairly 

rapidly by about 70%, at about the decay rate of the leading internal atmospheric 

eigenmode (Fig. 10), reflecting the loss of MJO predictability in the presence of noise. 

When evolution from the same initial conditions is determined using the uncoupled 

operator Lunc instead (Figs. 11e and f), the MJO evolution is largely unchanged, as might 

have been anticipated from section 4. Moreover, the MJO evolution occurs almost 

entirely within the xint subspace (not shown). Of special note is that even the uncoupled 

MJO propagates realistically through the western Pacific, in stark contrast to most GCM 

simulations. Further analysis indicates that the primary effect of coupling upon the MJO 

comes through mild amplification of the eastern equatorial Pacific TO anomaly (Figs. 11b 

and 11c) by central equatorial Pacific 850 hPa wind anomalies, similar to earlier results 

of Zhang (2001). This TO anomaly in turn induces a small increase in central Pacific 

convection and a corresponding decrease in western Pacific convection (Figs. 11c and 

11e). In general, the TO anomalies driven by the MJO are quite weak, on the order of 0.1 

K, consistent with the results of the regression as well as previous studies (e.g., Shinoda 

et al. 1998; Woolnough et al. 2000; Pegion and Kirtman 2008). 

Removing all interactions between H and other variables impacts MJO evolution much 

more significantly. We constructed a new operator (Ladiabatic) in which ψ and χ  still 
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interact with each other and with TO but internal atmospheric dynamics are otherwise 

adiabatic. The evolving anomaly (not shown) retains many MJO characteristics, but 

propagates about 33% faster across the tropical Indo-Pacific and decays by about 95% 

over one half cycle. Interestingly, in the vicinity of South America the propagation speed 

is unaltered, perhaps suggesting that dynamics are primarily adiabatic in this region 

and/or that implicit effects from some variable(s) not included in x (for example, 

interactions with land and/or the extratropics) are still present even in the modified 

operator. 

5.2. Optimal evolution of ENSO in the LIM 

PS95 showed that the “optimal” initial condition for maximum amplification of tropical 

SST anomalies, obtained via a singular vector decomposition (SVD) of the system 

propagator G(τ) under the domain-integrated (L2) norm of TO (e.g., Farrell 1988; PS95; 

WNS), is also the most relevant initial condition for ENSO development. The SVD 

analysis yields a dominant pair e1,f1 of normalized singular vectors and maximum 

singular value λ1, such that the initial condition f1 leads to the anomaly G f1 = λ1 e1 at 

time t = τ. The maximum possible anomaly growth factor λ1
2(τ) is sometimes called the 

“maximum amplification” (MA) curve (PS95), which peaks here at τ ~150 d (not shown). 

We initialized a LIM model run with the optimal initial condition for growth over a τ = 

150 d interval, shown in Fig. 12a; note its virtually zero initial atmospheric anomaly. The 

choice of τ is not too important, since for τ > 28 d the initial condition (and subsequent 

evolution) is almost independent of τ. [In fact, optimizing xA growth instead requires the 

same optimal initial condition.] Our singular vector analysis produces results broadly 
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similar to earlier studies using 3-month running mean data (see, for example, PS95), with 

two main exceptions: our MA curve peaks earlier than in other studies, which found a 

peak at about τ = 8 months, and the optimal SST anomaly is all one sign along the 

equator, whereas other studies found a weak opposite-sign equatorial anomaly at about 

1400W. The former difference appears due to using weekly instead of seasonal data. The 

latter difference occurs for both weekly and seasonal LIMs, however, and is instead a 

consequence of our data record.  

Tropical evolution over the next 210 days is shown in Figs. 12b-e. The 5-month anomaly 

growth period can be roughly divided into two phases. In the first, transient development 

lasting about two months, a low level equatorial westerly wind anomaly forms at the 

western edge (~1600E) of the positive SST anomaly extending northeastwards from the 

equator, reminiscent of the surface winds/SST pattern of the Pacific meridional mode 

(MM) (Vimont et al. 2003; Chang et al. 2007). A positive diabatic heating anomaly then 

also forms north of the equator, with negative anomaly over Indonesia. This atmospheric 

anomaly slowly shifts eastward and southward onto the equator, while the MM anomaly 

weakens and the equatorial TO anomaly strengthens. In fact, repeating the integration but 

initializing with only the western Pacific/Indian Ocean SST anomaly (not shown) 

suggests that most of the amplification stems from the MM SST anomaly and the 

opposite-signed anomaly to its west.  

The picture is slightly complicated by the simultaneous excitation of an eastward 

propagating MJO (cf. Fig 11) by the initial condition. However, this MJO only minimally 

contributes to SST anomaly amplification, as can be seen by the evolution of the coupled 

modes alone (i.e., xcoup(t)) shown in Fig. 12f. This is entirely consistent with the existence 
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of the non-orthogonal coupled and uncoupled subspaces demonstrated earlier. In other 

words, the same initial condition projects onto structures favorable for both ENSO and 

MJO evolution.  

Next, a stationary amplification stage occurs that lasts about three months, during which 

quasi-stationary atmospheric and SST anomalies are centered on the equator, apart from 

some minor variations due to the continuing eastward propagation of the steadily 

decaying MJO. Also, the area of positive SST anomaly continues to expand, primarily on 

its southern edge. Finally, the SST anomaly decays, although the heating anomaly near 

the dateline does not reach its peak for another few weeks, consistent with observations.  

The C-LIM can be used to explore how missing or incorrect physics, such as in a GCM, 

might impact ENSO evolution. As an example, we again integrate the initial conditions 

forwards but use either Lunc or Ladiabatic (not shown) instead of L. For Lunc, TO initially 

grows by about 15% for less than two months but then decays with a roughly 5-month e-

folding time. There is also relatively less growth near the South American coast, so that 

the absolute maximum is located at about 1200W. Alternatively, for Ladiabatic the initial 

circulation anomaly development is similar to Fig. 12 although initially weaker. The 

equatorial TO anomaly also amplifies at about the same rate, but it is now centered at 

1100W and continues to grow until day 200. Off the equator, little southward expansion 

of the TO anomaly occurs and the MM TO anomaly undergoes little decay. 

6. Summary and conclusion 

To investigate the effect of air-sea coupling on weekly tropical climate variability, we 

have constructed a coupled LIM using the observed zero-lag and 6-day lag covariances of 
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tropical SST and atmospheric variables. The model predicts the covariances and 

corresponding power spectra at all other lags. The predicted and observed lag-

covariances and spectra are generally found to be in agreement, even at much longer lags, 

at least up to the time scale associated with maximum possible predictable growth of 

anomalous SST in the system. This validates the LIM’s basic premise that the dynamics 

of weekly averages are effectively linear and stochastically driven, and justifies our linear 

diagnosis of the system.  

We find that while air-sea coupling greatly increases interannual SST variability and 

lengthens the period of ENSO, it has a very small effect on intraseasonal atmospheric 

variability. Within the linear dynamical operator, coupling minimally modifies the fast 

atmospheric eigenmode subspace but greatly modifies the slower SST eigenmode 

subspace (the latter point echoing theoretical nonlinear modeling results such as those of  

Neelin and Jin 1993). Moreover, the sharp distinction between the two subspaces 

suggests that scale interactions between ENSO and MJO phenomena are relatively weak. 

(Note that our analysis does not rule out important coupling effects on time scales much 

shorter than a week, notably diurnal effects.) 

The predictable evolution of ENSO does not appear to involve MJO forcing. This does 

not mean that the MJO has no effect on ENSO, since the optimal initial structure for 

ENSO could be excited by a series of MJO-like events similar to Fig. 11, as suggested for 

example by Zavala-Garay et al (2005). Additionally, extratropical noise could excite the 

meridional mode portion of the optimal structure, consistent with the "seasonal 

footprinting" mechanism (Vimont et al. 2003). However, since in either case these 

individual noise events would be largely unpredictable, it would not be until the SST 
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anomaly approached what is shown in Fig. 12a that ENSO could develop in a largely 

predictable manner.  

Our study is clearly limited by the relatively short data record of weekly SST. This has 

likely affected our estimate of the optimal structure, and also our predicted lag-

covariances at very long lags (e.g., 270 days), as well as our spectral estimates for the 

higher order PCs at ultra-low frequencies. These are typically better simulated in O-LIMs 

constructed from much longer datasets, albeit from seasonal or yearly averages. Another 

obvious problem is that the “ocean” part of our state vector is SST alone. Including 

subsurface information (such as 200C isotherm depth; Newman et al 2008, in preparation) 

might improve long-timescale results, but again such data has limited availability on 

weekly time scales. It is of course quite possible that some LIM deficiencies are not only 

due to data limitation but also to some nonlinear portion of the coupled dynamics not 

being treatable as linear terms plus stochastic noise, or to non-stationarity in the data (for 

example, a trend in the warm pool SSTs). Additionally, the more severe EOF truncation 

over the Indian Ocean may result in an underestimation of linear coupled processes there. 

Still, keeping in mind that the LIM captures the observed spectral peaks better than many 

coupled GCMS, these deficiencies appear to represent a relatively small part of the 

variance and would require a correspondingly small modification of our conclusions. 

Another limitation may be our assumption that L is independent of season. For three-

month running mean SST anomalies, PS95 suggested that both the observed seasonality 

of SST variability and the tendency of ENSO to be phase-locked might be explained with 

a fixed L but seasonal variation of both Q and the optimal structure (see also Penland 

1996, and Thompson and Battisti 2000 for an opposing view). We likewise find that the 
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initial conditions correspond best to the optimal pattern during spring (not shown), a 

result also consistent with the seasonal footprinting mechanism (Vimont et al. 2003; 

Chang et al. 2007). However, perhaps on weekly time scales the seasonality of L matters 

to the coupled climate system, given fundamental differences between summer and 

winter monsoons and apparent seasonal dependence of interactions between the MJO and 

ENSO (Hendon et al 2007). We attempted to address this issue by constructing separate 

C-LIMs for the extended winter (November 1-March 31) and extended summer (April 1-

October 31) seasons. These seasonally adjusted L operators gave modestly better results 

than the fixed L operator on shorter time scales. However, perhaps due to the limited 

length of the data set, the separate winter and summer C-LIMs were much less accurate 

on longer ENSO time scales. We suspect that seasonality is important, but that to 

construct a seasonally-varying LIM generally superior to the year-round LIM requires 

either more data or else another approach to computing a cyclo-stationary LIM, both 

issues deferred to future research. Furthermore, none of the seasonality differences we 

did find materially altered key points made in this paper concerning the impact of 

coupling on interannual vs. intraseasonal time scales. 

Our results support the view that the MJO is fundamentally an atmospheric phenomenon 

with strong coupling between the circulation and deep convection, but minimal coupling 

to the underlying SST anomalies. The fact that diabatic heating has a much larger impact 

on the MJO in the C-LIM than air-sea coupling suggests that improving MJO simulations 

in AGCMs may depend much more on improving simulation of clouds and convective 

processes (e.g., Maloney and Hartman 2001; Zhang and Mu 2005; Lin et al. 2004, 2006; 
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Vitart et al. 2007; Mu and Zhang 2008) than on merely coupling an AGCM to an OGCM 

or other interactive ocean model. 

Why then, do many (although not all) studies report improved MJO simulations in a 

coupled GCM than the corresponding AGCM? One possibility is that this result says 

more about the models than about nature. Perhaps improved MJO simulations in coupled 

GCMs result when one model error, incorrect atmospheric physics, is compensated for by 

a second error, incorrect coupling based upon incorrect local air-sea relationships (e.g., 

Wu et al 2006; Pegion and Kirtman 2008). Moreover, introducing coupling generally 

modifies the model climatology (e.g., Inness and Slingo 2003; Inness et al. 2003; Sperber 

et al. 2005; Zhang et al. 2006; Pegion and Kirtman 2008), potentially a more important 

factor than feedback from intraseasonal SST anomalies, such as in the far west Pacific 

where many models have mean easterlies instead of westerlies at the surface. Whether 

coupling likewise modifies the mean climate drift of model forecasts is also unclear. Note 

that our study does not address how coupling impacts the mean climate, since by 

construction there is no error in the C-LIM mean climate and no climate drift for 

forecasts of any lead. Finally, it seems likely that coupling is a more complex process 

than is commonly assumed in simpler theoretical studies. Certainly, the SST pattern 

associated with the MJO (e.g., Fig. 11a) is not simply a phase-shifted version of the 

atmospheric anomaly, so changes in surface fluxes due to remote SST anomalies and 

their influence on surface winds may be different than – and even partly oppose – 

changes due to local SST anomalies. 

Note also that standard definitions of the MJO may cleanly remove the mature ENSO 

phase (e.g., TO/EOF1) but not the high-frequency tail of additional interannual variability 
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(e.g., TO/EOF2) driven by coupled dynamics. This allows for a certain ambiguity when 

diagnosing both observations and models, particularly during spring and summer ENSO 

onset/development phases. For example, coupling might improve model forecasts of 

variability within this tail without improving the MJO simulation itself. 

Finally, the uncoupled and adiabatic operators can be considered to represent extreme 

cases of erroneous coupled climate models. In the C-LIM, incorrect air-sea coupling 

might lead to an ENSO whose period is too short and whose maximum is too far west, 

and incorrect coupling between atmospheric circulation and diabatic heating might result 

in an MJO that propagates and decays too rapidly. Both of these are common CGCM 

failings, suggesting that the approach we have used in this paper might also be useful for 

diagnosing errors within climate models themselves. 
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9. Figures 

 
Figure 1: Spectra of the leading principal component (PC) of monthly tropical SST 

variability from observations (pink line) compared to spectra derived from the output of 

the C-LIM (blue line) and the “20th-century” (20c3m) IPCC AR4 coupled GCMs (thin 

black, yellow, blue, and green lines). The observed spectrum was computed from the 

time series of the leading PC as determined from an EOF analysis of monthly SST 

anomalies in the region between 25oS-25oN for the years 1950-1999. The C-LIM was 

constructed as described in the paper from weekly 1982-2005 data, and then a 100-

member ensemble of 50-yr LIM model runs was made. For consistent comparison and 

because it is the real system these sophisticated models are trying to simulate, both LIM 

and GCM model output were projected onto the leading observed EOF of monthly 

anomalous SST to produce PC time series in each model, for the same 1950-1999 period. 

Gray shading indicates the 95% confidence interval from the LIM, based on the spread of 

the 100 ensemble members (see paper for more details). 

Figure 2: Total variance (contours) and fraction of local variance explained by EOF 

truncation (gray shading) for selected variables used in the model. Top: SST (TO); 

contour inteval 0.25 K2. 2nd row: 850 hPa streamfunction (ψ250); contour interval 2.5 x 

1012 m4/s2. 3rd row: diabatic heating (H400); contour interval 7.5 x 10-11 K2/s2. Bottom 

row: 250 hPa velocity potential (χ250); contour interval 1.5 x 1012 m4/s2. Thicker contours 
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indicate larger values, starting at 1 K2, 1 x 1013 m4/s2, 30 x 10-11 K2/s2, and 9 x 1012 m4/s2, 

respectively. 

Figure 3. Forecast skill of H400 for forecast leads of 28 and 150 days, for the C-LIM (top), 

the A-LIM (middle), and the C-LIM with only atmospheric initial conditions. Contour 

interval is 0.1; the zero contour is dashed. 

Figure 4. Forecast skill of TO for forecast leads of 150 and 270 days, for the C-LIM (top), 

the O-LIM (middle), and the C-LIM with only SST initial conditions. 

Figure 5. Observed (left panels) and LIM (right panels) lag-covariance. (a-b): 28-day lag-

covariance of H400 (contour interval=5 x 10-11 K2/s2). (c-d): 150-day lag-covariance of TO 

(contour interval=0.125 K2). (e-f): 270-day lag-covariance of TO (contour interval=0.125 

K2). 

Figure 6. Power spectra for the three leading SST (TO) PCs (red lines), compared to that 

predicted by the LIM (blue lines). Gray shading represents the 95% confidence interval 

determined from a 2400 yr run of the LIM (see text for further details). The green lines 

indicate spectra generated by the “uncoupled” version of the LIM (i.e., LOA=LAO). In 

these log(frequency) versus power times angular frequency (ω) plots, the area under any 

portion of the curve is equal to the variance within that frequency band. Note that 

displaying power times frequency slightly shifts the power spectral density peak centered 

at a period of 4.5 years to a variance peak centered at a period of 3.5 years. Insets in each 

panel show the corresponding EOF and the variance explained by that pattern. 
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Figure 7. Same as Fig. 6 but for the three leading diabatic heating (H) PCs. In addition, 

the dashed lines represent the spectra of the observed heating PCs projected onto the 

subset of either the “coupled” (yellow) or “internal” (pink) eigenmodes of the full 

operator. 

Figure 8. Comparison of the full and uncoupled operators. a) frequency vs. eft of each 

eigenvalues from the full (circle) and uncoupled (cross) operators, where the eigenvalues 

corresponding to the “coupled” and “SST-only” modes are blue, and the “internal 

atmosphere” and “atmosphere-only” modes are red. b) Maximum pattern correlation 

between the corresponding eigenmodes of the full and uncoupled operators. 

Figure 9. SST (TO) portion of the two leading empirical eigenmodes from the full (L) and 

uncoupled (Lunc) operators. For each eigenmode, left panels show the cos phase and right 

panels show the sin phase. (a-b) Leading propagating (and least damped overall) 

eigenmode of L. (a) cos phase, (b) sin phase. (c-d) Leading propagating (and second least 

damped overall) eigenmode of Lunc. (c) cos phase, (d) sin phase. (e) Leading stationary 

(and second least damped overall) eigenmode of L. (f) Leading stationary (and least 

damped overall) eigenmode of Lunc. Contour interval is the same in all panels but is 

arbitrary. The overall sign of each panel is also arbitrary; within each panel, values of one 

sign are depicted with gray shading and thick contours, and the other sign with thin 

contours. 

Figure 10. 400 hPa diabatic heating (H) portion of two selected empirical eigenmodes 

from the full (L) and uncoupled (Lunc) operators. For each eigenmode, left panels show 

the cos phase and right panels show the sin phase. (a) The “MJO” eigenmode, which is 
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the leading (least damped) “internal atmospheric” eigenmode of L and the leading 

“atmosphere-only” eigenmode of Lunc.  (b) Eigenmode pair 27/28, representing the 

“atmosphere-only” eigenmode that is most sensitive to uncoupling. Contour interval is 

the same in all panels but is arbitrary. The overall sign of each panel is also arbitrary; 

within each panel, values of one sign are depicted with gray shading and thick contours, 

and the other sign with thin contours. 

Figure 11.  Evolution of  “MJO” initial condition by the C-LIM dynamical operator L and 

by the uncoupled version of the C-LIM (Lunc). a) Initial TO and H400 state, obtained from 

the regression of the highpass data against highpass PC1, and b) the full evolved state 15 

days later. TO is indicated by shading (contour interval 0.02 K) and H400 by contours 

(contour interval 8 x 10-7 K/s). 850 hPa winds (derived from ψ850 and χ 850) are indicated 

by the black vectors, with minimum (maximum) amplitude 0.5 (2.5) m/s. c) Hovmuller 

diagram of the full C-LIM evolution of TO (shading; contour interval 0.02 K) and H400 

(contours; contour interval 8 x 10-7 K/s) at 30S. d) Hovmuller diagram of the full C-LIM 

evolution of χ 850 (shading; contour interval 1.75 x 106 m2/s) and ψ850 (contours; contour 

interval 1.75 x 106 m2/s) at 80N. e and f) Same as c) and d) but for the uncoupled C-LIM 

simulation starting with the same initial conditions. Note that for this linear model, sign 

in all panels is arbitrary, but that to match the direction of the wind vectors the black 

contours and yellow shading are positive, and red contours and blue shading are negative. 

Figure 12. Evolution of the optimal initial condition for amplification of SST anomalies 

over a 150-day interval. a) Initial TO and H400 state, and the evolved states b) 15 and c) 

150 days later. TO is indicated by shading (contour interval 0.1 K) and H400 by contours 
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(contour interval 1.6 x 10-6 K/s). 850 hPa winds (derived from ψ850 and χ850) are indicated 

by the black vectors, with minimum (maximum) amplitude 0.5 (2.5) m/s. d) Hovmuller 

diagram of the C-LIM evolution of TO (shading; contour interval 0.1 K) and H400 

(contours; contour interval 1.6 x 10-6 K/s) at the equator. e) Hovmuller diagram of the C-

LIM evolution of χ850 (shading; contour interval 1.75 x 106 m2/s) and ψ850 (contours; 

contour interval 1.75 x 106 m2/s) at 80N. f) Same as Fig. 12d except for the coupled mode 

component xcoup only. Note that for this linear model, sign in all panels is arbitrary, but 

that to match the direction of the wind vectors the black contours and yellow/red shading 

are positive, and red contours and blue shading are negative. Amplitudes are also 

arbitrary, but are scaled to have representative values; note that contour intervals for the 

atmospheric circulation variables are as in Fig. 11 but are larger for TO and H400. 
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Figure 1: Spectra of the leading principal component (PC) of monthly tropical SST variability from 
observations (pink line) compared to spectra derived from the output of the C-LIM (blue line) and the 
“20th-century” (20c3m) IPCC AR4 coupled GCMs (thin black, yellow, blue, and green lines). The observed 
spectrum was computed from the time series of the leading PC as determined from an EOF analysis of 
monthly SST anomalies in the region between 25oS-25oN for the years 1950-1999. The C-LIM was 
constructed as described in the paper from weekly 1982-2005 data, and then a 100-member ensemble of 
50-yr LIM model runs was made. For consistent comparison and because it is the real system these 
sophisticated models are trying to simulate, both LIM and GCM model output were projected onto the 
leading observed EOF of monthly anomalous SST to produce PC time series in each model, for the same 
1950-1999 period. Gray shading indicates the 95% confidence interval from the LIM, based on the spread 
of the 100 ensemble members (see paper for more details). 
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Figure 2: Total variance (contours) and fraction of local variance explained by EOF truncation (gray 
shading) for selected variables used in the model. Top: SST (TO); contour inteval 0.25 K2. 2nd row: 850 hPa 
streamfunction (ψ250); contour interval 2.5 x 1012 m4/s2. 3rd row: diabatic heating (H400); contour interval 
7.5 x 10-11 K2/s2. Bottom row: 250 hPa velocity potential (χ 250); contour interval 1.5 x 1012 m4/s2. Thicker 
contours indicate larger values, starting at 1 K2, 1 x 1013 m4/s2, 30 x 10-11 K2/s2, and 9 x 1012 m4/s2, 
respectively. 
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Figure 3. Forecast skill of H400 for forecast leads of 28 and 150 days, for the C-LIM (top), the A-LIM 
(middle), and the C-LIM with only atmospheric initial conditions. Contour interval is 0.1; the zero contour 
is dashed. 
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Figure 4. Forecast skill of TO for forecast leads of 150 and 270 days, for the C-LIM (top), the O-LIM 
(middle), and the C-LIM with only SST initial conditions. 
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Figure 5. Observed (left panels) and LIM (right panels) lag-covariance. (a-b): 28-day lag-covariance of 
H400 (contour interval=5 x 10-11 K2/s2). (c-d): 150-day lag-covariance of TO (contour interval=0.125 K2). (e-
f): 270-day lag-covariance of TO (contour interval=0.125 K2). 
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Figure 6. Power spectra for the three leading SST (TO) PCs (red lines), compared to that predicted by the 
LIM (blue lines). Gray shading represents the 95% confidence interval determined from a 2400 yr run of 
the LIM (see text for further details). The green lines indicate spectra generated by the “uncoupled” version 
of the LIM (Lun). In these log(frequency) versus power times angular frequency (ω) plots, the area under 
any portion of the curve is equal to the variance within that frequency band. Note that displaying power 
times frequency slightly shifts the power spectral density peak centered at a period of 4.5 years to a 
variance peak centered at a period of 3.5 years. Insets in each panel show the corresponding EOF and the 
variance explained by that pattern. 
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Figure 7. Same as Fig. 6 but for the three leading diabatic heating (H) PCs. In addition, the dashed lines 
represent the spectra of the observed heating PCs projected onto the subset of either the “coupled” (yellow) 
or “internal” (pink) eigenmodes of the full operator. 
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Figure 8. Comparison of the full and uncoupled operators. a) frequency vs. eft of each eigenvalue from the 
full (circle) and uncoupled (cross) operators, where the eigenvalues corresponding to the “coupled” and 
“SST-only” modes are blue, and the “internal atmospheric” and “atmosphere-only” modes are red. b) 
Maximum pattern correlation between the corresponding eigenmodes of the full and uncoupled operators. 
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Figure 9. SST (TO) portion of the two leading empirical eigenmodes from the full (L) and uncoupled (Lunc) 
operators. For each eigenmode, left panels show the cos phase and right panels show the sin phase. (a-b) 
Leading propagating (and least damped overall) eigenmode of L. (a) cos phase, (b) sin phase. (c-d) Leading 
propagating (and second least damped overall) eigenmode of Lunc. (c) cos phase, (d) sin phase. (e) Leading 
stationary (and second least damped overall) eigenmode of L. (f) Leading stationary (and least damped 
overall) eigenmode of Lunc. Contour interval is the same in all panels but is arbitrary. The overall sign of 
each panel is also arbitrary; within each panel, values of one sign are depicted with gray shading and thick 
contours, and the other sign with thin contours. 
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Figure 10. 400 hPa diabatic heating (H) portion of two selected empirical eigenmodes from the full (L) and 
uncoupled (Lunc) operators. For each eigenmode, left panels show the cos phase and right panels show the 
sin phase. (a) The “MJO” eigenmode, which is the leading (least damped) “internal atmospheric” 
eigenmode of L and the leading “atmosphere-only” eigenmode of Lunc. (b) Eigenmode pair 27/28, 
representing the “atmosphere-only” eigenmode that is most sensitive to uncoupling. Contour interval is the 
same in all panels but is arbitrary. The overall sign of each panel is also arbitrary; within each panel, values 
of one sign are depicted with gray shading and thick contours, and the other sign with thin contours. 
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Figure 11.  Evolution of  “MJO” initial condition by the C-LIM dynamical operator L and by the uncoupled 
version of the C-LIM (Lunc). a) Initial TO and H400 state, obtained from the regression of the highpass data 
against highpass PC1, and b) the full evolved state 15 days later. TO is indicated by shading (contour 
interval 0.02 K) and H400 by contours (contour interval 8 x 10-7 K/s). 850 hPa winds (derived from ψ 850 and 
χ850) are indicated by the black vectors, with minimum (maximum) amplitude 0.5 (2.5) m/s. c) Hovmuller 
diagram of the full C-LIM evolution of TO (shading; contour interval 0.02 K) and H400 (contours; contour 
interval 8 x 10-7 K/s) at 30S. d) Hovmuller diagram of the full C-LIM evolution of χ850 (shading; contour 
interval 1.75 x 106 m2/s) and ψ 850 (contours; contour interval 1.75 x 106 m2/s) at 80N. e and f) Same as c) 
and d) but for the uncoupled C-LIM simulation starting with the same initial conditions. Note that for this 
linear model, sign in all panels is arbitrary, but that to match the direction of the wind vectors the black 
contours and yellow shading are positive, and red contours and blue shading are negative. 
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Figure 12. Evolution of the optimal initial condition for amplification of SST anomalies over a 150-day 
interval. a) Initial TO and H400 state, and the evolved states b) 15 and c) 150 days later. TO is indicated by 
shading (contour interval 0.1 K) and H400 by contours (contour interval 1.6 x 10-6 K/s). 850 hPa winds 
(derived from ψ 850 and χ850) are indicated by the black vectors, with minimum (maximum) amplitude 0.5 
(2.5) m/s. d) Hovmuller diagram of the C-LIM evolution of TO (shading; contour interval 0.1 K) and H400 
(contours; contour interval 1.6 x 10-6 K/s) at the equator. e) Hovmuller diagram of the C-LIM evolution of 
χ850 (shading; contour interval 1.75 x 106 m2/s) and ψ 850 (contours; contour interval 1.75 x 106 m2/s) at 80N. 
f) Same as Fig. 12d except for the coupled mode component xcoup only. Note that for this linear model, sign 
in all panels is arbitrary, but that to match the direction of the wind vectors the black contours and 
yellow/red shading are positive, and red contours and blue shading are negative. Amplitudes are also 
arbitrary, but are scaled to have representative values; note that contour intervals for the atmospheric 
circulation variables are as in Fig. 11 but are larger for TO and H400.  
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